Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytopathology ; : PHYTO07230229R, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-37750924

RESUMEN

Alternaria linariae is an economically important foliar pathogen that causes early blight disease in tomatoes. Understanding genetic diversity, population genetic structure, and evolutionary potential is crucial to contemplating effective disease management strategies. We leveraged genotyping-by-sequencing (GBS) technology to compare genome-wide variation in 124 isolates of Alternaria spp. (A. alternata, A. linariae, and A. solani) for comparative genome analysis and to test the hypotheses of genetic differentiation and linkage disequilibrium (LD) in A. linariae collected from tomatoes in western North Carolina. We performed a pangenome-aware variant calling and filtering with GBSapp and identified 53,238 variants conserved across the reference genomes of three Alternaria spp. The highest marker density was observed on chromosome 1 (7 Mb). Both discriminant analysis of principal components and Bayesian model-based STRUCTURE analysis of A. linariae isolates revealed three subpopulations with minimal admixture. The genetic differentiation coefficients (FST) within A. linariae subpopulations were similar and high (0.86), indicating that alleles in the subpopulations are fixed and the genetic structure is likely due to restricted recombination. Analysis of molecular variance indicated higher variation among populations (89%) than within the population (11%). We found long-range LD between pairs of loci in A. linariae, supporting the hypothesis of low recombination expected for a fungal pathogen with limited sexual reproduction. Our findings provide evidence of a high level of population genetic differentiation in A. linariae, which reinforces the importance of developing tomato varieties with broad-spectrum resistance to various isolates of A. linariae.

2.
Brief Bioinform ; 24(6)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37824740

RESUMEN

Metagenomics is a powerful tool for understanding organismal interactions; however, classification, profiling and detection of interactions at the strain level remain challenging. We present an automated pipeline, quantitative metagenomic alignment and taxonomic exact matching (Qmatey), that performs a fast exact matching-based alignment and integration of taxonomic binning and profiling. It interrogates large databases without using metagenome-assembled genomes, curated pan-genes or k-mer spectra that limit resolution. Qmatey minimizes misclassification and maintains strain level resolution by using only diagnostic reads as shown in the analysis of amplicon, quantitative reduced representation and shotgun sequencing datasets. Using Qmatey to analyze shotgun data from a synthetic community with 35% of the 26 strains at low abundance (0.01-0.06%), we revealed a remarkable 85-96% strain recall and 92-100% species recall while maintaining 100% precision. Benchmarking revealed that the highly ranked Kraken2 and KrakenUniq tools identified 2-4 more taxa (92-100% recall) than Qmatey but produced 315-1752 false positive taxa and high penalty on precision (1-8%). The speed, accuracy and precision of the Qmatey pipeline positions it as a valuable tool for broad-spectrum profiling and for uncovering biologically relevant interactions.


Asunto(s)
Metagenoma , Metagenómica , Análisis de Secuencia de ADN , Bases de Datos Factuales
3.
J Sci Food Agric ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37406153

RESUMEN

BACKGROUND: Little information is available on α- and ß-amylase activity and their associations with starch, sugars and other culinary qualities in sweetpotato. The present study aimed to assess sweetpotato storage root α- and ß-amylase activity in relation to starch, sugars, ß-carotene content and storage root flesh color. RESULTS: α- and ß-amylase activity (α-AA and ß-AA) were assayed from a Tanzania (T) × Beauregard (B) genetic mapping population in their uncured (raw), cured and stored (approximately 11 weeks) forms during 2016 and 2017. Ceralpha and Betamyl methods, with modifications to suit a high-throughput microplate assay format, were used to quantify α-AA and ß-AA, respectively. Storage root dry matter, starch, glucose, fructose, sucrose and ß-carotene content were predicted using near infrared reflectance spectroscopy. There was little relationship (r2 = 0.02-0.08, P ≤ 0.05 in 2016 and r2 = 0.05-0.11, P ≤ 0.05 in 2017) between α-AA and ß-AA. We observed negative linear associations between α-AA and dry matter content and generally no correlations between ß-AA and dry matter content. ß-AA and sugars were weakly positively correlated. ß-AA and ß-carotene content were positively correlated (r = 0.3-0.4 in 2016 and 0.3-0.5 in 2017). CONCLUSION: Generally, the correlation coefficient for amylase enzyme activity and sugar components of storage roots at harvest increased after curing and during post-harvest storage. The present study is a major step forward in sweetpotato breeding in terms of providing a better understanding of how α- and ß-amylase activity are inter-associated with several culinary quality attributes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
J Sci Food Agric ; 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340988

RESUMEN

BACKGROUND: Variability in sugar content between raw and cooked sweetpotato storage roots impact nutritional and dietary importance with implications for consumer preference. High-throughput phenotyping is required to breed varieties that satisfy consumer preferences. RESULTS: Near-infrared reflectance spectroscopy (NIRS) calibration curves were developed for analysing sugars in baked storage roots using 147 genotypes from a population segregating for sugar content and other traits. The NIRS prediction curves had high coefficients of determination in calibration (R2 c ) of 0.96 (glucose), 0.93 (fructose), 0.96 (sucrose), and 0.96 (maltose). The corresponding coefficients of determination for cross-validation (R2 cv ) were 0.92 (glucose), 0.89 (fructose), 0.96 (sucrose) and 0.93 (maltose) and were similar to the R2 c for all sugars measured. The ratios of the standard deviation of the reference set to the standard error of cross-validation were greater than three for all sugars. These results confirm the applicability of the NIRS curves in efficiently determining sugar content in baked sweetpotato storage roots. External validation was performed on an additional 70 genotypes. Coefficients of determination (r2 ) were 0.88 (glucose), 0.88 (fructose), 0.86 (sucrose) and 0.49 (maltose). The results were comparable to those found for the calibration and cross-validation in fructose, glucose, and sucrose, but were moderate for maltose due to the low variability of maltose content in the population. CONCLUSIONS: NIRS can be used for screening sugar content in baked sweetpotato storage roots in breeding programs and can be used to assist with the development of improved sweetpotato varieties that better meet consumer preferences. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

5.
Genes (Basel) ; 13(10)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36292626

RESUMEN

Bursera comprises ~100 tropical shrub and tree species, with the center of the species diversification in Mexico. The genomic resources developed for the genus are scarce, and this has limited the study of the gene flow, local adaptation, and hybridization dynamics. In this study, based on ~155 million Illumina paired-end reads per species, we performed a de novo genome assembly and annotation of three Bursera species of the Bullockia section: Bursera bipinnata, Bursera cuneata, and Bursera palmeri. The total lengths of the genome assemblies were 253, 237, and 229 Mb for B. cuneata, B. palmeri, and B. bipinnata, respectively. The assembly of B. palmeri retrieved the most complete and single-copy BUSCOs (87.3%) relative to B. cuneata (86.5%) and B. bipinnata (76.6%). The ab initio gene prediction recognized between 21,000 and 32,000 protein-coding genes. Other genomic features, such as simple sequence repeats (SSRs), were also detected. Using the de novo genome assemblies as a reference, we identified single-nucleotide polymorphisms (SNPs) for a set of 43 Bursera individuals. Moreover, we mapped the filtered reads of each Bursera species against the chloroplast genomes of five Burseraceae species, obtaining consensus sequences ranging from 156 to 160 kb in length. Our work contributes to the generation of genomic resources for an important but understudied genus of tropical-dry-forest species.


Asunto(s)
Bursera , Burseraceae , Humanos , Bursera/genética , Sulindac , México , Genómica
6.
Front Plant Sci ; 13: 956936, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160986

RESUMEN

Efficient breeding and selection of superior genotypes requires a comprehensive understanding of the genetics of traits. This study was aimed at establishing the general combining ability (GCA), specific combining ability (SCA), and heritability of sweetpotato weevil (Cylas spp.) resistance, storage root yield, and dry matter content in a sweetpotato multi-parental breeding population. A population of 1,896 F1 clones obtained from an 8 × 8 North Carolina II design cross was evaluated with its parents in the field at two sweetpotato weevil hotspots in Uganda, using an augmented row-column design. Clone roots were further evaluated in three rounds of a no-choice feeding laboratory bioassay. Significant GCA effects for parents and SCA effects for families were observed for most traits and all variance components were highly significant (p ≤ 0.001). Narrow-sense heritability estimates for weevil severity, storage root yield, and dry matter content were 0.35, 0.36, and 0.45, respectively. Parental genotypes with superior GCA for weevil resistance included "Mugande," NASPOT 5, "Dimbuka-bukulula," and "Wagabolige." On the other hand, families that displayed the highest levels of resistance to weevils included "Wagabolige" × NASPOT 10 O, NASPOT 5 × "Dimbuka-bukulula," "Mugande" × "Dimbuka-bukulula," and NASPOT 11 × NASPOT 7. The moderate levels of narrow-sense heritability observed for the traits, coupled with the significant GCA and SCA effects, suggest that there is potential for their improvement through conventional breeding via hybridization and progeny selection and advancement. Although selection for weevil resistance may, to some extent, be challenging for breeders, efforts could be boosted through applying genomics-assisted breeding. Superior parents and families identified through this study could be deployed in further research involving the genetic improvement of these traits.

7.
Mol Biol Rep ; 49(7): 6623-6632, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35618938

RESUMEN

BACKGROUND: Molecular markers have played and will continue to play a major role in the genetic characterization and improvement of soybeans. They have helped identify major loci for tolerance to abiotic stressors, disease resistance, herbicide resistance, soybean seed quality traits, and yield. However, most yield quantitative trait loci (QTL) are specific to a certain population, and the genetic variation found in the specific bi-parental population is not always shared in other populations. A major objective in soybean breeding is to develop high yielding cultivars. Unfortunately, soybean seed yield, as well as protein and oil content, are complex quantitative traits to characterize from the phenotypic and genotypic perspectives. The objectives of this study are to detect soybean genomic regions that increase protein content, while maintaining oil content and seed yield and to successfully identify soybean QTL associated with these seed quality traits. METHODS AND RESULTS: To achieve these objectives, data from the 138 recombinant inbred lines grown in six environments were used to perform QTL detection analyses in search of significant genomic regions affecting soybean seed protein, oil, and yield. CONCLUSIONS: A total of 21 QTL were successfully identified for yield, protein, oil, methionine, threonine, lodging, maturity, and meal. Knowledge of their locations and flanking markers will aid in marker assisted selection for plant breeders. This will lead to a more valuable soybean for farmers, processors, and animal nutritionists.


Asunto(s)
Sitios de Carácter Cuantitativo , Mapeo Cromosómico/métodos , Genotipo , Fenotipo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Semillas/metabolismo , /metabolismo
8.
Front Plant Sci ; 13: 1022555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36816486

RESUMEN

Sweetpotato (Ipomoea batatas) is the sixth most important food crop and plays a critical role in maintaining food security worldwide. Support for sweetpotato improvement research in breeding and genetics programs, and maintenance of sweetpotato germplasm collections is essential for preserving food security for future generations. Germplasm collections seek to preserve phenotypic and genotypic diversity through accession characterization. However, due to its genetic complexity, high heterogeneity, polyploid genome, phenotypic plasticity, and high flower production variability, sweetpotato genetic characterization is challenging. Here, we characterize the genetic diversity and population structure of 604 accessions from the sweetpotato germplasm collection maintained by the United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Plant Genetic Resources Conservation Unit (PGRCU) in Griffin, Georgia, United States. Using the genotyping-by-sequencing platform (GBSpoly) and bioinformatic pipelines (ngsComposer and GBSapp), a total of 102,870 polymorphic SNPs with hexaploid dosage calls were identified from the 604 accessions. Discriminant analysis of principal components (DAPC) and Bayesian clustering identified six unique genetic groupings across seven broad geographic regions. Genetic diversity analyses using the hexaploid data set revealed ample genetic diversity among the analyzed collection in concordance with previous analyses. Following population structure and diversity analyses, breeder germplasm subsets of 24, 48, 96, and 384 accessions were established using K-means clustering with manual selection to maintain phenotypic and genotypic diversity. The genetic characterization of the PGRCU sweetpotato germplasm collection and breeder germplasm subsets developed in this study provide the foundation for future association studies and serve as precursors toward phenotyping studies aimed at linking genotype with phenotype.

9.
PLoS Genet ; 17(12): e1009797, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928949

RESUMEN

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.


Asunto(s)
Domesticación , Depresión Endogámica/genética , Sitios de Carácter Cuantitativo/genética , Zea mays/genética , Genes de Plantas , Variación Genética/genética , Fenotipo , Fitomejoramiento , Proteínas de Plantas/genética , Selección Genética/genética , Zea mays/crecimiento & desarrollo
10.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34686607

RESUMEN

Very little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C. J. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 116, 5643-5652 (2019)] drew multiple conclusions about how genetic architecture influenced and was altered by maize domestication based on one sympatric pair of teosinte and maize populations. To test the generality of their conclusions, we assayed the structure of genetic variances, genetic correlations among traits, strength of selection during domestication, and diversity in genetic architecture within teosinte and maize. Our results confirm that additive genetic variance is decreased, while dominance genetic variance is increased, during maize domestication. The genetic correlations are moderately conserved among traits between teosinte and maize, while the genetic variance-covariance matrices (G-matrices) of teosinte and maize are quite different, primarily due to changes in the submatrix for reproductive traits. The inferred long-term selection intensities during domestication were weak, and the neutral hypothesis was rejected for reproductive and environmental response traits, suggesting that they were targets of selection during domestication. The G-matrix of teosinte imposed considerable constraint on selection during the early domestication process, and constraint increased further along the domestication trajectory. Finally, we assayed variation among populations and observed that genetic architecture is generally conserved among populations within teosinte and maize but is radically different between teosinte and maize. While selection drove changes in essentially all traits between teosinte and maize, selection explains little of the difference in domestication traits among populations within teosinte or maize.


Asunto(s)
Productos Agrícolas/genética , Genes de Plantas , Zea mays/genética , Evolución Molecular , Flores , Interacción Gen-Ambiente , Reproducción , Zea mays/fisiología
11.
Life (Basel) ; 11(6)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200292

RESUMEN

Pyrus calleryana Decne. (Callery pear) includes cultivars that in the United States are popular ornamentals in commercial and residential landscapes. Last few decades, this species has increasingly naturalized across portions of the eastern and southern US. However, the mechanisms behind this plant's spread are not well understood. The genetic relationship of present-day P.calleryana trees with their Asian P. calleryana forebears (native trees from China, Japan, and Korea) and the original specimens of US cultivars are unknown. We developed and used 18 microsatellite markers to analyze 147 Pyrus source samples and to articulate the status of genetic diversity within Asian P. calleryana and US cultivars. We hypothesized that Asian P. calleryana specimens and US cultivars would be genetically diverse and would show genetic relatedness. Our data revealed high genetic diversity, high gene flow, and presence of population structure in P. calleryana, potentially relating to the highly invasive capability of this species. Strong evidence for genetic relatedness between Asian P. calleryana specimens and US cultivars was also demonstrated. Our data suggest the source for P. calleryana that have become naturalized in US was China. These results will help understand the genetic complexity of invasive P. calleryana when developing management for escaped populations: In follow-up studies, we use the gSSRs developed here to analyze P. calleryana escape populations from across US.

12.
Brief Bioinform ; 22(5)2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-33822850

RESUMEN

Next-generation sequencing (NGS) enables massively parallel acquisition of large-scale omics data; however, objective data quality filtering parameters are lacking. Although a useful metric, evidence reveals that platform-generated Phred values overestimate per-base quality scores. We have developed novel and empirically based algorithms that streamline NGS data quality filtering. The pipeline leverages known sequence motifs to enable empirical estimation of error rates, detection of erroneous base calls and removal of contaminating adapter sequence. The performance of motif-based error detection and quality filtering were further validated with read compression rates as an unbiased metric. Elevated error rates at read ends, where known motifs lie, tracked with propagation of erroneous base calls. Barcode swapping, an inherent problem with pooled libraries, was also effectively mitigated. The ngsComposer pipeline is suitable for various NGS protocols and platforms due to the universal concepts on which the algorithms are based.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Simulación por Computador , Humanos , Reproducibilidad de los Resultados
13.
Theor Appl Genet ; 134(7): 1945-1955, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33813604

RESUMEN

KEY MESSAGE: Utilizing a high-density integrated genetic linkage map of hexaploid sweetpotato, we discovered a major dominant QTL for root-knot nematode (RKN) resistance and modeled its effects. This discovery is useful for development of a modern sweetpotato breeding program that utilizes marker-assisted selection and genomic selection approaches for faster genetic gain of RKN resistance. The root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] (RKN) causes significant storage root quality reduction and yields losses in cultivated sweetpotato [Ipomoea batatas (L.) Lam.]. In this study, resistance to RKN was examined in a mapping population consisting of 244 progenies derived from a cross (TB) between 'Tanzania,' a predominant African landrace cultivar with resistance to RKN, and 'Beauregard,' an RKN susceptible major cultivar in the USA. We performed quantitative trait loci (QTL) analysis using a random-effect QTL mapping model on the TB genetic map. An RKN bioassay incorporating potted cuttings of each genotype was conducted in the greenhouse and replicated five times over a period of 10 weeks. For each replication, each genotype was inoculated with ca. 20,000 RKN eggs, and root-knot galls were counted ~62 days after inoculation. Resistance to RKN in the progeny was highly skewed toward the resistant parent, exhibiting medium to high levels of resistance. We identified one major QTL on linkage group 7, dominant in nature, which explained 58.3% of the phenotypic variation in RKN counts. This work represents a significant step forward in our understanding of the genetic architecture of RKN resistance and sets the stage for future utilization of genomics-assisted breeding in sweetpotato breeding programs.


Asunto(s)
Resistencia a la Enfermedad/genética , Ipomoea batatas/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Tylenchoidea/patogenicidad , Animales , Mapeo Cromosómico , Ligamiento Genético , Genotipo , Ipomoea batatas/parasitología , Enfermedades de las Plantas/parasitología , Polimorfismo de Nucleótido Simple
14.
PLoS Genet ; 16(5): e1008791, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32407310

RESUMEN

The genetics of domestication has been extensively studied ever since the rediscovery of Mendel's law of inheritance and much has been learned about the genetic control of trait differences between crops and their ancestors. Here, we ask how domestication has altered genetic architecture by comparing the genetic architecture of 18 domestication traits in maize and its ancestor teosinte using matched populations. We observed a strongly reduced number of QTL for domestication traits in maize relative to teosinte, which is consistent with the previously reported depletion of additive variance by selection during domestication. We also observed more dominance in maize than teosinte, likely a consequence of selective removal of additive variants. We observed that large effect QTL have low minor allele frequency (MAF) in both maize and teosinte. Regions of the genome that are strongly differentiated between teosinte and maize (high FST) explain less quantitative variation in maize than teosinte, suggesting that, in these regions, allelic variants were brought to (or near) fixation during domestication. We also observed that genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. Finally, we observed that about 75% of the additive variance in both teosinte and maize is "missing" in the sense that it cannot be ascribed to detectable QTL and only 25% of variance maps to specific QTL. This latter result suggests that morphological evolution during domestication is largely attributable to very large numbers of QTL of very small effect.


Asunto(s)
Variación Genética , Sitios de Carácter Cuantitativo , Zea mays/genética , Domesticación , Flujo Génico , Frecuencia de los Genes , Genes de Plantas , Genética de Población , Carácter Cuantitativo Heredable , Selección Genética , Zea mays/clasificación
15.
Genetics ; 215(3): 579-595, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371382

RESUMEN

In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. [Formula: see text], is an important autopolyploid species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population ('Beauregard' × 'Tanzania') with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position. Multiple interval mapping was performed using our R package QTLpoly and detected a total of 13 QTL, ranging from none to four QTL per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as well as in other autopolyploids.


Asunto(s)
Mapeo Cromosómico/métodos , Estudio de Asociación del Genoma Completo/métodos , Ipomoea batatas/genética , Poliploidía , Sitios de Carácter Cuantitativo , Fitomejoramiento/métodos
16.
BMC Plant Biol ; 20(1): 3, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898489

RESUMEN

BACKGROUND: Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. RESULTS: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-value < 5 × 10- 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. CONCLUSION: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.


Asunto(s)
Ipomoea batatas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Genes de Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos/metabolismo , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
17.
Theor Appl Genet ; 133(1): 23-36, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31595335

RESUMEN

KEY MESSAGE: ß-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, ß-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while ß-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, ß-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase ß-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and ß-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Ipomoea batatas/genética , Poliploidía , Sitios de Carácter Cuantitativo/genética , Almidón/metabolismo , beta Caroteno/metabolismo , Alelos , Ambiente , Estudios de Asociación Genética , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Carácter Cuantitativo Heredable
18.
G3 (Bethesda) ; 10(1): 281-292, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31732504

RESUMEN

The hexaploid sweetpotato (Ipomoea batatas (L.) Lam., 2n = 6x = 90) is an important staple food crop worldwide and plays a vital role in alleviating famine in developing countries. Due to its high ploidy level, genetic studies in sweetpotato lag behind major diploid crops significantly. We built an ultra-dense multilocus integrated genetic map and characterized the inheritance system in a sweetpotato full-sib family using our newly developed software, MAPpoly. The resulting genetic map revealed 96.5% collinearity between I. batatas and its diploid relative I. trifida We computed the genotypic probabilities across the whole genome for all individuals in the mapping population and inferred their complete hexaploid haplotypes. We provide evidence that most of the meiotic configurations (73.3%) were resolved in bivalents, although a small portion of multivalent signatures (15.7%), among other inconclusive configurations (11.0%), were also observed. Except for low levels of preferential pairing in linkage group 2, we observed a hexasomic inheritance mechanism in all linkage groups. We propose that the hexasomic-bivalent inheritance promotes stability to the allelic transmission in sweetpotato.


Asunto(s)
Cromosomas de las Plantas/genética , Ligamiento Genético , Ipomoea batatas/genética , Poliploidía , Mapeo Cromosómico/métodos , Emparejamiento Cromosómico , Sitios Genéticos , Haplotipos
19.
Proc Natl Acad Sci U S A ; 116(12): 5643-5652, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842282

RESUMEN

The process of evolution under domestication has been studied using phylogenetics, population genetics-genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance-covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.


Asunto(s)
Genética de Población/métodos , Zea mays/genética , Agricultura , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/fisiología , Domesticación , Grano Comestible/genética , Evolución Molecular , Genómica , Fenotipo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Selección Genética/genética
20.
Nat Commun ; 9(1): 4580, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389915

RESUMEN

Sweetpotato [Ipomoea batatas (L.) Lam.] is a globally important staple food crop, especially for sub-Saharan Africa. Agronomic improvement of sweetpotato has lagged behind other major food crops due to a lack of genomic and genetic resources and inherent challenges in breeding a heterozygous, clonally propagated polyploid. Here, we report the genome sequences of its two diploid relatives, I. trifida and I. triloba, and show that these high-quality genome assemblies are robust references for hexaploid sweetpotato. Comparative and phylogenetic analyses reveal insights into the ancient whole-genome triplication history of Ipomoea and evolutionary relationships within the Batatas complex. Using resequencing data from 16 genotypes widely used in African breeding programs, genes and alleles associated with carotenoid biosynthesis in storage roots are identified, which may enable efficient breeding of varieties with high provitamin A content. These resources will facilitate genome-enabled breeding in this important food security crop.


Asunto(s)
Diploidia , Genoma de Planta , Ipomoea batatas/genética , Fitomejoramiento , Secuencia de Bases , Carotenoides/metabolismo , Ecotipo , Variación Genética , Genómica , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...